问题描述
定义一个二维数组:
int maze[5][5] = {
0, 1, 0, 0, 0,
0, 1, 0, 1, 0,
0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 0, 0, 1, 0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
Input
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
Output
左上角到右下角的最短路径,格式如样例所示。
Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
思路(DFS寻路)
- 首先将迷宫存在一个二位数组中,然后遍历数组,遇到1则改变方向,遇到0接着向下走,将此点存入栈中,如果无路,则返回上一结点,将此结点移出栈,并将此点的数组值更改为1,防止死循环。直至找到出口。
struct path
{
int x; //横座标
int y; //纵座标
struct path *next;
};
typedef struct Link
{
struct path *head;
}link;
//此处已将队列更换为栈,因为之前的队列删除尾节点会将队列结构完全破坏,而造成队列不能正确工作,sorry!!!
//模拟为栈
void push(link *que, int x, int y)
{
struct path *p;
p = (struct path*)malloc(sizeof(struct path));
p->x = x;
p->y = y;
p->next = que->head;;
que->head = p;
/*
que->rear->next = p;
que->rear = p;
que->rear->next = NULL;
*/
}
void pop(link *que)
{
//如果不合适将刚入栈的节点删除
que->head = que->head->next; //删除栈的头结点就会变得很简单
}
//此处已经不需要这个函数,太多余!
/*
void pop2(link *que, int *x, int *y)
{
struct path *temp;
temp = que->head->next;
que->head->next = temp->next; //将temp结点出队
*x = temp->x;
*y = temp->y;
free(temp);
}
*/
- 写好队列的实现后,我们来实现对迷宫的分析,此处没有更正,递归是正确的!
/*用递归对迷宫进行遍历*/
void r(int a[5][5], int x, int y, link *que)
{
if( x < 5 && x >= 0 && y < 5 && y >= 0)
{
if(x == 4 && y == 4) //到达迷宫出口
return;
/*首先判断右边下一个点是否可以走*/
if(a[x][y + 1] == 0 && (y + 1) < 5) //此处为了防止数组越界
{
y++;
push(que, x, y); //可以走就将该结点入队
r(a, x, y, que); //递归下一个座标
return;
}
/*上一个条件不满足就判断其向下是否能走*/
if(a[x + 1][y] == 0 && (x + 1) < 5)//防止数组越界
{
x++;
push(que, x, y); //入队
r(a, x, y, que); //递归
return;
}
/*无路可走,就返回上一个座标*/
if(a[x - 1][y] == 0 && x - 1 >= 0)
{
a[x][y] = 1; //并将该点设为1,防止死循环
pop(que); //将该座标移出队列
x--;
r(a, x, y, que);
return;
}
if(a[x][y - 1] == 0 && y - 1 >= 0)
{
a[x][y] = 1;
pop(que); //移出队列
y--;
r(a, x, y, que);
return;
}
}
}
总结
1、用到递归和栈的思想,将迷宫当作矩阵,遍历,判断下一个座标是否可以通过,如果不行则换方向,如果无路可走则退格。
2、自己今天有很多思想没有思考到,写一篇博客加深一下印象。
博客如有错误,欢迎大家评论指出,一起探讨一起进步。感谢!!
完整代码
#include<stdio.h>
#include<stdlib.h>
//迷宫问题
struct path
{
int x; //横座标
int y; //纵座标
struct path *next;
};
typedef struct Link
{
struct path *head;
}link;
//模拟为栈
void push(link *que, int x, int y)
{
struct path *p;
p = (struct path*)malloc(sizeof(struct path));
p->x = x;
p->y = y;
p->next = que->head;;
que->head = p;
/*
que->rear->next = p;
que->rear = p;
que->rear->next = NULL;
*/
}
void pop(link *que)
{
//如果不合适将刚入栈的节点删除
que->head = que->head->next;
}
/*
void pop2(link *que, int *x, int *y)
{
struct path *temp;
temp = que->head->next;
que->head->next = temp->next; //将temp结点出队
*x = temp->x;
*y = temp->y;
free(temp);
}
*/
void r(int a[5][5], int x, int y, link *que)
{
if( x < 5 && x >= 0 && y < 5 && y >= 0)
{
if(x == 4 && y == 4)
return;
if(a[x][y + 1] == 0 && (y + 1) < 5)
{
y++;
push(que, x, y);
r(a, x, y, que);
return;
}
if(a[x + 1][y] == 0 && (x + 1) < 5)
{
x++;
push(que, x, y);
r(a, x, y, que);
return;
}
if(a[x - 1][y] == 0 && x - 1 >= 0)
{
a[x][y] = 1;
pop(que);
x--;
r(a, x, y, que);
return;
}
if(a[x][y - 1] == 0 && y - 1 >= 0)
{
a[x][y] = 1;
pop(que);
y--;
r(a, x, y, que);
return;
}
}
}
int main(void)
{
int a[5][5];
int i, j;
int x, y;
for(i = 0; i < 5; i++)
{
for(j = 0; j < 5; j++)
{
scanf("%d", &a[i][j]);
}
}
link *top, *temp;
top = temp = (link *)malloc(sizeof(link));
top->head = (struct path *)malloc(sizeof(struct path));
r(a, 0, 0, top);
printf("(0, 0)\n");
//此处数组是为了存储路径,因为使用的是栈结构,所以存储的路径必然是倒序!
int PATH[25] = {0};
int count = 0;
//将栈倒序的路径存储进数组中,二维数组太占用空间所以此处我们使用一维数组,并使用数学方法存储!!
while(top->head->next != NULL)
{
PATH[count] = top->head->x *10 + top->head->y;
++count;
top->head = top->head->next;
}
for(i = count - 1; i >= 0; --i)
{
int num_x = PATH[i] / 10; //从数据中提取出X
int num_y = PATH[i] % 10; //从数组中提取出Y
//打印路径
printf("(%d, %d)\n", num_x, num_y);
}
return 0;
}